
联系人: 厦门立德软件公司
所在地:福建 厦门市
本发明公开了一种基于CFA算法和BP神经网络的入侵检测方法,将所述BP神经网络的运行参数编码为CFA算法中的细胞个体,再将误差函数作为CFA算法的适应值函数,多次迭代后选择适应度最优的参数作为所述BP神经网络的初始权值和阈值进行训练,最后将训练好的所述BP神经网络应用于入侵检测的分类器中。本发明利用CFA算法的全局搜索和收敛速度快的特点,优化BP神经网络的初始运行参数,并据此构造一个可以应用于网络入侵检测的分类器。本方法通过改善BP神经网络因初始参数随机化导致的易陷入局部最小值和收敛速度慢的缺点,从而提高了BP神经网络在网络入侵检测中检测准确率。
龙岩市科技创新服务平台
福建省龙岩市龙岩大道1号市行政办公中心
联系方式:0597-2601001,400-649-1633